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Background and Aims. Diabetic foot ulcers (DFUs) are linked to amputations and premature deaths. Negative pressure wound
therapy (NPWT) has been used for DFUs. The mechanism of NPWT’s action may be associated with its influence on
circulating molecules. We assessed NPWT’s effect on the plasma levels of angiopoietin-2 (Ang2), a key regulator of
angiogenesis, and its microvesicular receptors (Tie2) as well as the microvesicles (MVs) themselves in DFU patients. Materials
and Methods. We included 69 patients with type 2 diabetes mellitus (T2DM) and neuropathic, noninfected DFUs—49 were
treated with NPWT and 20 were treated with standard therapy (ST). Assigning patients to the NPWT group was not random
but based on DFU characteristics, especially wound area. Ang2 was measured by ELISA in the entire group, while in a subgroup
of 19 individuals on NPWT and 10 on ST, flow cytometry was used to measure Tie2+ and the corresponding isotype control
(Iso+) and annexin V (AnnV+) as well as total MVs. Measurements were performed at the beginning and after 8 ± 1 days of
therapy. Results. Treatment groups were similar for basic characteristics but differed by their median DFU areas (10.3 (4.2-18.9)
vs. 1.3 (0.9-3.4) cm2, p = 0:0001). At day 0, no difference was observed in Ang2 levels, total MVs, MV Tie+, and MV
AnnV+ between the groups. Ang2 decreased after 8 days in the NPWT group, unlike in the ST group (3.54 (2.40-5.40) vs. 3.32
(2.33-4.61), p = 0:02, and 3:19 ± 1:11 vs. 3:19 ± 1:29 ng/mL, p = 0:98, respectively). No other parameters were identified that may
have been influenced by the NPWT treatment. Conclusion. NPWT in T2DM patients with neuropathic, noninfected DFU seems
to lead to reduction of the Ang2 level. Influencing the level of Ang2 may constitute one of NPWT-related mechanisms to
accelerate wound healing.
1. Introduction

Diabetic foot syndrome (DFS), frequently occurring with
diabetic foot ulcers (DFUs), leads to lower extremity ampu-
tations and premature death in many patients with diabetes
[1–3]. Negative pressure wound therapy (NPWT) has been
used as an adjunct treatment for DFUs. Its potential influ-
ence on local gene expression and epigenetic methylation
in the wound bed has been recently described [4, 5]. How-
ever, NPWT’s novel mechanism of action may be associ-
ated with processes involving the entire organism where
signals are transmitted via circulating molecules between

https://orcid.org/0000-0003-3999-6725
https://orcid.org/0000-0003-3589-1715
https://orcid.org/0000-0002-4794-0820
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1756798


2 Journal of Diabetes Research
the organism’s tissues and organs. This intertissue signal-
ing, for example, via circulating microvesicles (MVs), has
been linked to the pathomechanism of wound healing
[6–8]. MVs represent a heterogeneous population of vesi-
cles that bud off from the plasma membrane and express
specific antigens from their parental cells. The main source
of circulating MVs originates from different cell populations
such as platelets, endothelial cells, neutrophils, and lympho-
cytes [9–11]. The main function of MVs is to transfer bioac-
tive molecules including proteins, lipids, DNA, mRNA, and
miRNA, some of which have important signaling functions
[12–14]. Cellular components are selectively recruited into
MVs by highly regulated processes [15]. Among these bioac-
tive components, angiogenesis-regulating factors attract the
most interest, especially in patients suffering from diabetic
complications [16]. MVs contain a variety of factors con-
tributing to their angiogenesis-promoting function, such as
angiogenin, vascular endothelial growth factor (VEGF),
monocyte chemotactic protein-1 (MCP-1), and also recep-
tor proteins including urokinase-type plasminogen activator
receptor (UPAR), receptor-2 for VEGF (VEGF R2), and
Tie-2/TEK [17]. Tie-2 belongs to the angiopoietin family
of receptors, and its expression is observed mainly on endo-
thelial cells, but also onneutrophils,monocytes/macrophages,
and on some smooth muscle cells [11, 18]. Angiopoietin-1
(Ang1) is a proangiogenic factor. Angiopoietin-2 (Ang2),
which works through the same receptor as Ang1, was initially
described as an antagonist to Ang1 that destabilizes the vascu-
lature [19, 20]. However, recent data suggests that the pro- or
antiangiogenic functions of Ang2 depend on the local cyto-
kinemilieu [21]. For example, this context-dependent activity
of Ang2 is well documented for VEGF. In the presence of
VEGF, Ang2 acts more proangiogenic, whereas when VEGF
is inhibited, Ang2 acts antiangiogenic [21–24]. Under physi-
ological conditions, the levels of Ang2 are rather low but tend
to increase in cancers and inflammatory diseases [20]. In type
2 diabetes (T2DM) patients, levels of circulating Ang2 are
increased and associated with chronic complications [25].

The aim of this research was to assess the effect of NPWT
on Ang2, a strong modulator of angiogenesis and an inflam-
mation marker, as well as on the circulating plasma levels of
its microvesicular receptor Tie2 and the MVs themselves in
patients with DFU.

2. Materials and Methods

2.1. Study Population. Patients were recruited from the
Department of Metabolic Diseases’ outpatient diabetic foot
clinic at the University Hospital in Krakow. We included 69
T2DM patients with neuropathic, nonischemic, and nonin-
fected DFUs. They were assigned either to the standard ther-
apy (ST) group or to the combined standard therapy with
NPWT group, with each treatment time lasting 8 ± 1 days.
Patients were nonrandomly assigned to the NPWT group
but rather chosen based on local and international research
and clinical practices, as well as the guidelines concerning
NPWT use in DFU, most of which take wound area into
account [26, 27]. In short, patients with ulcerations ≤ 1:0 c
m2 were allocated to the ST group, and the remaining
patients were assigned to the NPWT group. Clinical data
was obtained from available medical records.

2.2. Ethical Approval and Informed Consent. The study pro-
tocol was approved by the Jagiellonian University Bioethical
Committee and was in accordance with the 1964 Declaration
of Helsinki and its later amendments. Patients’ written
informed consent was obtained prior to inclusion.

2.3. Sample Collection and Storage. Blood from the NPWT
group was collected in plastic tubes with potassium ethylene-
diaminetetraacetic acid (EDTA) at an initial (pretreatment)
time, and a second (posttreatment) blood draw occurred on
day 8 ± 1. In the ST arm, blood samples were also obtained
on the same corresponding days (day 0 and day 8). Blood
was centrifuged at room temperature for 10min at 2,700 g
with a similar delay (30min) from the time of blood draw
to the time of centrifugation. Then, plasma was separated,
stored, and frozen at −80°C until it was assayed.

2.4. Laboratory Analysis. Plasma samples were thawed at
37°C in a water bath to avoid cryoprecipitation and centri-
fuged twice for 15min at 2,500 g to remove residual platelets.
MVs were evaluated by flow cytometry. The average event
count was measured, and appropriate dilutions were per-
formed in order to obtain 5,000 events/s. Aliquots of plasma
(20 μL) were stained for MVs by incubating with a chosen
antibody: Alexa Fluor® 488 anti-human CD202b (Tie2/Tek)
Antibody (BioLegend); isotype control Alexa Fluor® 488
Mouse IgG1, κ Isotype Ctrl (FC) Antibody (BioLegend);
and annexin V (fluorescein isothiocyanate (FITC) annexin
V; Annexin V Binding Buffer, BioLegend). After incubating
for 30 minutes, samples were then diluted in phosphate-
buffered saline to obtain a final volume of 200 μL. Final
results were corrected with a dilution factor. All MV analyses
were performed on the Apogee A50 micro flow cytometer
(Apogee Flow Systems Ltd., Northwood, UK). Every sample
was measured for 180 s with a flow rate of 1.5 μL/min; the
sample volume was set at 150 μL and the sheath pressure
was set at 150 hPa. The trigger was set on a middle angle light
scattering (MALS) detector with a voltage of 415V. For daily
calibrations, we used reference beads (ApogeeMix, cat#1493,
Apogee Flow Systems Ltd.) composed of a mixture of
180 nm, 240nm, 300nm, 590nm, 880nm, and 1300 nm silica
vesicles with a refractive index of 1.43 and 110nm and
500 nm green fluorescent (excited by blue laser) latex beads
with a refractive index of 1.59. Ang2 evaluations were per-
formed with a Quantikine ELISA Human Angiopoietin-2
Immunoassay (R&D Systems, Minneapolis, USA).

2.5. Statistical Analysis. Statistical analysis was performed
using Statistica software v. 13.0 (TIBCO Software Inc.,
CA, USA). The Shapiro-Wilk test was performed to check
for a normal distribution of continuous variables. Differ-
ences between groups were assessed with the t-test or U
test for normally and nonnormally distributed continuous
variables, respectively, and by chi-square or Fischer’s exact
test for categorical variables. Differences within study groups
before and after therapy (day 0 vs. day 8) were checked
with the t-test or Wilcoxon signed rank test, where



Table 1: Clinical characteristics of the study groups.

Entire group (n = 69) MV subgroup (n = 29)
NPWT ST p value NPWT ST p value

Sex M/F (n) 42/7 15/5 0.31 17/2 8/2 0.59

Age (year) 64:3 ± 10:3 64:1 ± 6:0 0.93 69:2 ± 8:9 62:9 ± 6:6 0.06

BMI (kg/m2) 29:6 ± 5:7 30:9 ± 5:1 0.38 27.7 (25.7-30.9) 27.3 (25.6-29.1) 0.91

Duration of diabetes (year) 17:1 ± 8:9 17:1 ± 6:8 0.25 13:4 ± 7:0 16:6 ± 5:6 0.23

Insulin treatment Y/N (n) 48/1 18/2 0.20 18/1 9/1 1.00

Duration of insulin therapy (year) 5.0 (1.0-10.0) 6.0 (3.0-15.0) 0.38 4.0 (1.0-8.0) 10.0 (3.0-13.5) 0.10

Daily dose of insulin (unit) 50.0 (40.0-70.0) 50.0 (30.0-60.0) 0.70 43:9 ± 22:5 44:9 ± 27:7 0.96

HbA1c (mmol/mol) 51.9 (43.2-58.5) 56.3 (43.7-66.7) 0.25 47.5 (41.0-56.3) 48.1 (39.9-60.7) 0.96

HbA1c (%) 6.9 (6.1-7.5) 7.3 (6.2-8.3) 0.25 6.5 (5.9-7.3) 6.6 (5.8-7.7) 0.96

eGFR (mL/min/1.73m2) 88.0 (63.0-93.0) 80.5 (58.0-95.5) 0.74 87.0 (55.0-92.0) 76.0 (53.0-98.0) 0.80

Wound area (cm2) 10.3 (4.2-18.9) 1.3 (0.9-3.4) 0.0001 12.6 (3.8-19.2) 1.0 (0.8-1.4) 0.001

Duration of the wound (week) 12.2 (10.1-23.7) 10.3 (4.1-18.0) 0.16 12.0 (10.1-22.9) 10.0 (5.1-24.9) 0.30

Data shown as n number of cases, mean ± SD (for normally distributed variables) or median and IQR (for nonnormally distributed variables).
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applicable. Continuous variables are presented as mean ±
SD or median (interquartile range). A p value below 0.05
was assumed significant.
3. Results

The study group consisted of 69 T2DM patients, 49 of whom
were treated with NPWT and 20 treated with ST. The NPWT
and ST groups did not differ in basic clinical characteristics,
such as age (64:3 ± 10:3 vs. 64:1 ± 6:0 years, p = 0:93) and
HbA1c levels (51.9 (43.2-58.5) vs. 56.3 (43.7-66.7)mmol/mol,
p = 0:25). However, they differed by median DFU areas (10.3
(4.2-18.9) vs. 1.3 (0.9-3.4) cm2, p = 0:0001), which corre-
sponded to the recruitment criteria. The clinical character-
istics of the entire study group in which Ang2 was
measured and the subgroup in which total MVs, MV Tie+,
MV AnnV+, and MV Iso+ were analyzed are presented in
Table 1.

At day 0, there were no differences among the examined
markers between the NPWT and ST groups. After 8 ± 1 days
of therapy (day 8), a significant decrease in the level of Ang2
was observed in the NPWT group, but not in the ST cohort
(3.54 (2.40-5.40) vs. 3.32 (2.33-4.61), p = 0:02, and 3:19 ±
1:11 vs. 3:19 ± 1:29, p = 0:98, respectively). The NPWT ther-
apy did not change the quantity of MVs, MV Tie2+, MV
AnnV+, and MV Iso+. Finally, we compared the level of
examined particles between the groups at day 8. We found
that for total MV quantity, there was a statistically significant
difference between the NPWT group and the ST group
(12:2 ∗ E6 vs. 8:2 ∗ E6; p = 0:03), while no significant differ-
ence was present at day 0 (p = 0:07). In addition, there was
no difference between the Ang2 and Tie2 plasma levels as
well as the MV AnnV+ quantity in this comparison.

Detailed results of the performed measurements are
shown in Table 2. The graphical representation of the flow
cytometry results is found in the supplementary Figure 1.
4. Discussion

In this study, we report a potential effect of NPWT on circu-
lating Ang2 and MVs in T2DM patients with noninfected,
nonischemic, and neuropathic DFU. Whether it constitutes
a novel mechanism of NPWT action requires further
research. NPWT’s local mechanism of action at the tissue
level has been well documented in a recent review [26].
NPWT results in the promotion of wound contraction, tis-
sue granulation, vessel proliferation, neoangiogenesis, epi-
thelialization, and removal of excess extracellular fluid
[26]. On the molecular level, NPWT promotes proangio-
genic and anti-inflammatory conditions by increasing the
expression of growth factors and reducing the expression
of inflammatory cytokines [26]. In our previous reports,
we saw that NPWT altered the local gene expression
involved with wound healing [4]. Moreover, we showed that
NPWT’s action is mediated through epigenetic alterations
resulting mainly in the inhibition of complement system
activation [5]. In a very recent study, NPWT increased the
number of circulating endothelial progenitor cells in ische-
mic foot ulcers of diabetic patients which was attributed to
the upregulation of systemic and local vascular endothelial
growth factors and stromal cell-derived factor-1α levels
[28]. It should be noted that some unidentified mechanisms
might still exist.

In this pilot study, we observed a significant decrease in
the level of Ang2 in patients treated with NPWT, but not in
the ST group. As mentioned above, since angiopioetin-1
(Ang1) is a proangiogenic factor, Ang2, which acts through
the same receptor as Tie2, is thought to be a context-
dependent pro- or antiangiogenic factor. In the general pop-
ulation, Ang2 is positively associated with levels of other
inflammatory markers, such as hs-CRP and white blood
counts [29]. Next, Ang2 has been linked to tumor size and
metastatic efficacy, and its inhibition resulted in decreased
tumor size and metastatic efficacy [30]. Moreover, Ang2
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constitutes a biomarker of cardiovascular risk in individuals
with arterial hypertension [31]. Last, but not least, Ang2 is
associated with cardiovascular and renal outcomes as well
as retinopathy in diabetic patients [32, 33]. Interestingly,
recent data suggests that angiopoietin-like protein 2
(ANGPTL2), which is structurally and functionally related
to Ang2, was associated with diabetic foot syndrome, and its
level correlated with the staging of diabetic foot [34]. Regard-
ing the wound-healing process, it was demonstrated that ele-
vated levels of Ang2 in the absence of VEGF were associated
with impaired wound healing, suggesting that a proper bal-
ance between Ang2 and VEGF is crucial for maintaining nor-
mal wound healing [35]. Our finding of decreased Ang2 levels
afterNPWTshould be considered in the context of other stud-
ies showing that NPWT promotes VEGF expression [36].
Moreover, MVs contribute to intercellular EGF-receptor
transfer to endothelial cells, which is initiated by VEGF
expression [37]. There is also some data on the beneficial
effect of Ang2/Tie2 inhibition. For example, Ang2 inhibition
prevented transplant ischemia-reperfusion injury and
chronic transplant rejection in rat cardiac allografts [38]. In
humans, the beneficial effect of Ang2 inhibition was studied
mostly in cancer models [20, 30]. On the other hand, Ang-
based peptidomimetic compounds resulted in increased
granulation tissue and decreased wound closure time in a
diabetic mice model [39]. In randomized clinical trials,
NPWT proved to be effective in the promotion of wound
healing in T2DM patients with diabetic foot syndrome
[40, 41]. In light of our pilot study, the beneficial effects of
NPWT may be potentially explained by decreased Ang2
levels after NPWT therapy. However, the current study was
not designed to directly demonstrate clinical benefits of
NPWT on wound healing and the current International
Working Group on the Diabetic Foot (IWGDF) guidelines
emphasizes the use of NPWT in postoperative rather than
in nonsurgical foot wounds [27].

This study has several shortcomings. First of all, it was
designed to be nonrandom; thus, it could be biased by several
factors including variable ulcer areas in the treatment arms.
Second, the sample size was rather low and NPWT use was
very brief. Thus, it is unclear whether the negative NPWT
findings are true or if they result from the insufficient power
to detect the putative impact on anything other than the
examined Ang2 circulating molecules. In particular is that
these negative findings occurred despite interesting premises;
for example, it recently became apparent that MVs are
involved during different stages of wound healing, such as
coagulation, proliferation, migration, angiogenesis, collagen
production, and extracellular matrix remodeling [42]. More-
over, in diabetic rat models, cutaneous wound healing could
be accelerated by exosomes from adipose-derived stem cells
[43]. Interestingly, in a study on active Charcot neuropathy,
it was found that concentrations of extracellular MVs corre-
lated to the elevation of CRP and varying foot temperatures
[44]. Such data suggests that MVs can be of great interest
as therapeutic agents or as diagnostic tools in patients with
complications due to diabetes. Thus, a larger study should
be conducted to establish NPWT’s effect on the wider spec-
trum of circulating particles.
5. Conclusion

NPWT is observed to influence the level of Ang2 in
patients with T2DM who have neuropathic, nonischemic,
and noninfected DFUs. Influencing the level of Ang2 may
constitute one of NPWT-related mechanisms to accelerate
wound healing.
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